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Investigation of the n2 +1 infinite primes conjecture 
 

Investigation of conjecture n2 +1 infinite primes  
 
Abstract 
 
In the article, a study of Landau's fourth problem on the infinity of prime numbers of type n2 +1 is 
developed, a study centred on the primality theorems of congruence and complementary 
congruence. 
 
 

1 Introduction 
 
The conjecture, corresponding to Landau's fourth problem, asserts that there are infinite prime 

numbers of the form 𝑛2 +1. 

 

Three theorems already exist to reinforce the conjecture: Fermat's conjecture on the sums of two 

squares, Legendre's conjecture (conjecture proven to date: [d]) which states that there is always a 

prime number between n2 and (n + 1)2 and Dirichlet's conjecture which states that given two coprime 

integers 𝑎 and 𝑏, there are infinite arithmetic progressions of the type 𝑎+𝑛𝑏, with positive integer 𝑛, 
which contain infinite prime numbers. 

 

In fact, the first theorem states that every prime number can be written as the sum of two perfect 

squares if and only if it is congruent to 1 modulo 4. Since 𝑛2 +1 is always a number congruent to 1 

modulo 4 since, with n definitely even, 𝑛2 is always a multiple of 4, in consistency with Fermat's 

theorem we can write 

 

5 = 12  + 22 , 17 = 12  + 42 , .......  101 = 12  + 102 , ..... 3137 = 12  + 562 , ......... 8101 = 12  + 902 ........ 

 

 and to date there is no mathematical consideration that beyond a certain (maximum) value of n there 

is no more n such that 𝑛2 +1 is prime. 

 

Legendre's theorem is also a reinforcement of the conjecture. This theorem states that there always 

exists a prime number between n2 and (n + 1)2 or, what is equivalent for the first congruence primality 

theorem, that there always exists a number n0 ≤ 2n+1 such that n0 is not congruent with (n+1)2 ∀ pi 

∈ ℙ(𝑛 + 1). Whenever then, based on the value of n, n0  is equal to 2n, (n + 1)2  and 2n are incongruent 

∀ pi ∈ ℙ(𝑛 + 1) and this implies, again by the primality theorem, that (n + 1)2  - 2n is equal to a prime 

number. But (n + 1)2  - 2n = 𝑛2 +1 and therefore 𝑛2 +1 will equal a prime number.  

Here again, there is no mathematical consideration that beyond a certain (maximum) value of n there 

are no more natural numbers such that (n + 1)2  and 2n are incongruous and that therefore 𝑛2 +1 turns 

out to be a prime number.  

 

Finally, with regard to Dirichlet's theorem, we observe that all terms n2 +1 with n even: 

 

5, 17, 37, 65, 101, .................... 

 

belong to the arithmetic sequence of the type 1 + 4m: 

 

5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, ................... 

 

succession which, for Dirichlet, comprises infinite primes including all those of the type 𝑛2 +1.  
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Again, there is no mathematical consideration that beyond a certain (maximum) value of n among all 

the successive infinite primes belonging to the series 1+4m there are not also some 𝑛2 +1.  

 

In short, all three of the above theorems support the existence of an infinite sequence of n2  + 1 primes, 

 

[n2 +1(n)]: 5 (2) - 17 (4) - 37 (6) - 101 (10) - 197 (14) - 257 (16) - 401 (20) - 577 (24) - 677 (26) - 

1297 (36) - 1601 (40) - 2917 (54) - 3137 (56) - 4357 (66) - 5477 (74) - 7057 (84) - 8101 (90) - 8837 

(94) - 12101 (110) - 13457 (116) - 14401 (120) - 15377 (124) - 15877 (126) .................. 
 
even if they do not prove the conjecture fully. 

 

2 The primality conditions of n2  + 1 
 

Let us consider any even positive integer n and see what condition must be satisfied for n2  +1 to be 

a prime number.  

 

By the primality theorem of compcongruence n2  +1 is prime if: 

 

(2,3) ∀ pi  ≤ n: n2 ∦ 1(mod p )i 
 
or if, for each p [1]p = 1 and its complement equal to p-1, the result is: 

 

(2.4) ∀ pi  ≤ n: [n2]𝑝𝑖
≠ pi  -1   

 
Starting then from condition (2.4) we find the conditions that n must satisfy in order for n2 + 1 to be 

prime. 

 

Lemma 2.5 For each m, k Ꜫ N   with m = 1+2k the square of each number represented by one of the 

rest classes modulo m corresponds to two rest classes modulo m. 

 

Dim. From modular arithmetic we know that: 

 

(2.6)  [x2]𝑚 =  [+x]𝑚 ∗ [+x]𝑚
   or [x2]𝑚 =  [−x]𝑚 ∗ [−x]𝑚 

 

where [+x] and [-x] represent two of the rest classes modulo m: [0], [1], [2], [3] ........... [m-1] 

 

Consequently, we can state that each class [x2]𝑚 of rest modulo m corresponds to two classes, [+x]𝑚 

e [−x]𝑚, of rest modulus m, the second of which corresponds to the class [m − x]𝑚. 

 

So for example if we set x=5 and m=15, (2.6) becomes: 

 

[25]15  = [5]15 * [5]15  or  [25]15  =  [-5]15 * [-5]15  =[10]15 

 

and thus to the rest class [25]15 , equal to [10]15,  modulo 15 correspond the two rest classes modulo 

15: [+5] and [-5]. It should be noted that the two classes are always one even and the other odd: if in 

fact  [+x]𝑚 è pari allora [−x]
m

= [−x + m]
m

 sarà dispari e viceversa.  

    
Definition 2.7 We denote by the name class-root(x) the two rest classes modulo m whose square is 

equal to the rest class [x] modulo m.  

 

Lemma 2.8 For each m, k Ꜫ N0   with m = 3+4k there are no class-roots(m-1) modulo m. 

 

As we know, all the odd natural numbers m can be of two types: 3+4k and 1+4k, with k belonging to 

N0 .  



Let us then assume by hypothesis that for m = 3+4k it is possible that two class-roots(m-1), [x]m and 

[-x]m , of rest modulus m correspond to the rest class [m-1] modulo m. For this to be the case, the 

equation must be solvable: 

 

(2.9) [([±x]𝑚)2]𝑚 = [𝑚 − 1]𝑚 

 

i.e. for m=3+4k: 

 

(2.10) [([±x]𝑚)2]𝑚 = [3 + 4𝑘 − 1]𝑚 = [2 + 4𝑘]𝑚
 

 

This equation is unsolvable in x since, if x is even, x2 unlike 2+4k is a multiple of 4; then if x is odd, 

the unsolvability is even more evident being x2  odd and 2+4k even. The same non-solvability of (2.9) 

can be proved for all numbers represented by the two classes. 

 

Lemma 2.11 For every n, m, k Ꜫ N   with m = 1+4k there always exist class-roots(m-1) modulo m. 

 

Let us also assume here by hypothesis that for m = 1+4k it is possible that two class-roots(m-1), [x] 

and [-x], of remainder modulus m correspond to the rest class [m-1] modulo m For this to be the case, 

the equation must be solvable in k: 

 

(2.12) [([±x]𝑚)2]𝑚 = [𝑚 − 1]𝑚 

 

i.e. for m=1+4k: 

 

(2.13) [([x]𝑚)2]𝑚 = [1 + 4𝑘 − 1]𝑚 = [4𝑘]𝑚 

 

equation that is always solvable in x for any value of m. In fact, surely at least one of the two classes 

can be represented by an even number whose square is always a multiple of 4. 

 

Primality Theorem of n2 + 1 2.14 For every n, k Ꜫ N0   and n even, n2 + 1 is prime if  ∀𝑝𝑖 ∈ ℙ(𝑛) of 

the type 𝑝𝑖 = 1+4k it follows that the rest class [n]pi modulo 𝑝𝑖  is different from the two class-

roots(𝑝𝑖 − 1) modulus 𝑝𝑖. 

 

Dim. Prime numbers can also obviously be of two types: 3+4k and 1+4k, with k belonging to N0 . 

Recalling the condition of primality (2.4) and according to Lemma 2.8 among the pi  belonging to 

ℙ(𝑛) we must not consider those of type 3+4k since for them there is no class-root(𝑝𝑖 − 1)  modulo 

pi .  

 

In contrast, for primes of the type 1+4k (Lemma 2.11) there are always two class-roots(pi − 1) 

modulo pi . 

 

Given then any even positive integer n, n2  +1 is prime if, see (2.4), ∀ pi ≤ n, with pi =1+4k: [n2]𝑝𝑖
≠ 

pi -1 with k ≥ 0. But 

 

(2.15) [n2]𝑝𝑖
= [n]pi  * [n]pi  = [x]pi  * [x]pi 

 

with [x]pi  rest class [n]pi   modulo pi . If ∀ pi ≤ n of type 1+4k the [x]pi  of (2.15) is different from the 

class-roots(pi -1) modulo pi then n2 + 1 is prime. 

 

It can easily be verified that the above condition is satisfied by a long sequence of n and thus of the 

first n2  + 1. 

 

n2 +1  (n): 5 (2) - 17 (4) - 37 (6) - 101 (10) ........ 21317 (146) - 22501 (150) - 24337 (156) - 25601 

(160) ........... 2464901 (1570) - 2483777 (1576) - 2496401 (1580) ......... 29484901 (5430) - 29658917 

(5446) - 29877157 (5466) .............. 



 

Let us now demonstrate how this sequence is infinite. 

 

3 Infinity theorem of n2  + 1 primes 
 

Definition 3.1 Let us denote by ℙ′(n)  𝑙′𝑖𝑛𝑠𝑖𝑒𝑚𝑒 𝑑𝑒𝑖 𝑝𝑟𝑖𝑚𝑖 𝑎𝑝𝑝𝑎𝑟𝑡𝑒𝑛𝑒𝑛𝑡𝑖 𝑎 ℙ(n) of the type 
p=1+4k. 
  

Enunciation 3.2 Prime numbers of the type n2 + 1, with n Ꜫ N and even, are infinite and the relative 

n are those for which the property that  ∀𝑝𝑖 ∈ ℙ′(𝑛)  [n]pi   is different from the two class-roots(𝑝𝑖 −
1) modulo 𝑝𝑖. 

  
Dim. All n   satisfying the conditions of Theorem 2.13 are even positive integers whose remainder 

classes [n]pi modulo pi, for each pi  Ꜫ ℙ′(n),  are different from the remainder classes(pi − 1) modulus 

pi (e.g. if n=14  we have that ℙ′(n) = {5, 13}; the two rest-root classes (5-1) modulo 5 are [2]5 
and [3]5   while the two rest-root classes (13-1) modulo 13 are [5]13 and [8]13 ; on the other 
hand, the two rest-root classes 14 modulo 5 and modulo 13 are [4]5 and [1]13 , respectively, and 
that is different from the respective rest-root classes above,  and therefore 142 +1=197 is a 
prime number). 
 
That said, let us see how to calculate the number of n, such that n2 +1 is prime, less than any even 

positive integer N0  > 5. 

 

Having then selected an N0 > 5 we denote by ∏( N0 ) the product of all primes belonging to  ℙ′( N0 

) and consider the number-class table (Appendix A) consisting for each natural number in the interval 

[0, ∏( N0 )] of the rest classes [n]pi  modulo pi for each pi belonging to ℙ′( N0 ).  

 

We then delete from this table the rows that have rest classes n of prime modules pi  belonging   ℙ′( 
N0 ) equal to the two class-roots(pi - 1) modulo pi . The numbers in the number-classes table, whose 

rows have been eliminated by the previous sieve, can then only be those which in their combination 

of rest classes [n]pi  modulo pi do not have, for each pi belonging to ℙ′( N0 ), the respective two class-

roots (pi -1) modulo pi .  

 

Then the even numbers M in the table that have not been deleted will, according to combinatorial 

calculation, turn out to be: 

 

(3.3.) 
1

2
∗ ∏ (𝑝 − 2)𝑝Ꜫ𝑃′(𝑁𝑜)       

 

Thus (3.3) gives us the quantity of numbers M of the table-interval [0, ∏( N0 )] whose combination 

of rest classes [n]pi   modulo pi does not include, for each pi belonging to ℙ′( N0 ), the respective two 

class-roots(pi -1) modulo pi . But in the interval [0, ∏( N0 )] there are certainly (Bertrand's postulate) 

primes greater than N0 , and therefore not contained in the set ℙ′( N0 ), whose class-roots(pi -1) 
modulo pi can be equal to the rest classes [n]pi  for the same moduli pi . This eventuality precludes 

extending the applicability of the primality theorem 2.13 also for the n included in the interval ]N0 , 

∏( N0 )]. Instead, we can state that all numbers MN0 less than or equal to N0  (and thus belonging 

to the interval  [0, N0 ]) and for which the primality condition of Theorem 2.13 is satisfied are such 

that MN0
2  + 1 is prime. 

The existence of these numbers MN0  is guaranteed by verifying their presence already for N0  = 6: 

n=2 (n2 +1=5), n=4 (n2 +1=17) and n=6 (n2 +1=37)...........  

 

If we now consider a number N1  > N0  and such that ∏( N1 ) > ∏( N0 ) we will certainly have that: 

 

(3.4)     
1

2
∗ ∏ (𝑝 − 2)𝑝Ꜫ𝑃′(𝑁1)   >   

1

2
∗ ∏ (𝑝 − 2)𝑝Ꜫ𝑃′(𝑁𝑜)  

 



i.e. the quantity of the M-numbers of the table-interval [0, ∏( N1 )] is greater than that of the M-

numbers of the table-interval [0, ∏( N0 )]. This implies that the MN1  of the interval [0, N1 ] are also 

greater than or equal to the MN0  of the interval [0, N0 ]. Proceeding with successive increasing Ni the 

number of MNi  grows progressively and there can be no Nmax   such that ∀n > N nmax 
2  + 1 is not 

prime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 



APPENDIX A 

 

NUMBERS-CLASSES TABLE: NUMBERS Ꜫ [0, ∏(N0)] - REMAINING CLASSES p Ꜫ P'(N0)  

  N0 = 14 - P'(N0) = {5, 13} - [0, ∏(N0)] = [0. 65].     

          

          

n  5 13   n  5 13 

          

0  0 0   33   3 7 

1  1 1   34   4 8 

2   2 2   35  0 9 

3   3 3   36  1 10 

4  4 4   37   2 11 

5   0 5   38   3 12 

6  1 6   39  4 0 

7   2 7   40  0 1 

8   3 8   41  1 2 

9  4 9   42   2 3 

10  0 10   43   3 4 

11  1 11   44   4 5 

12   2 12   45  0 6 

13   3 0   46  1 7 

14  4 1   47   2 8 

15  0 2   48   3 9 

16  1 3   49  4 10 

17   2 4   50  0 11 

18   3 5   51  1 12 

19  4 6   52   2 0 

20  0 7   53   3 1 

21   1 8   54  4 2 

22   2 9   55  0 3 

23   3 10   56  1 4 

24  4 11   57   2 5 

25  0 12   58   3 6 

26  1 0   59  4 7 

27   2 1   60   0 8 

28   3 2   61  1 9 

29  4 3   62   2 10 

30  0 4   63   3 11 

31   1 5   64  4 12 

32   2 6   65  0 0 
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