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Abstract

In the article, a study of Landau’s fourth problem on the infinity of prime numbers of type n2 +1 is
developed, a study centred on the primality theorems of congruence and complementary
congruence.

1 Introduction

The conjecture, corresponding to Landau's fourth problem, asserts that there are infinite prime
numbers of the form n? +1.

Three theorems already exist to reinforce the conjecture: Fermat's conjecture on the sums of two
squares, Legendre's conjecture (conjecture proven to date: [d]) which states that there is always a
prime number between n? and (n + 1) and Dirichlet's conjecture which states that given two coprime
integers a and b, there are infinite arithmetic progressions of the type a+nb, with positive integer n,
which contain infinite prime numbers.

In fact, the first theorem states that every prime number can be written as the sum of two perfect
squares if and only if it is congruent to 1 modulo 4. Since n? +1 is always a number congruent to 1
modulo 4 since, with n definitely even, n? is always a multiple of 4, in consistency with Fermat's
theorem we can write

5=12+22 17=12 +4%, ... 101=1% +10?, ... 3137 =12 +567, ......... 8101 =12 +90°........

and to date there is no mathematical consideration that beyond a certain (maximum) value of n there
is no more n such that n? +1 is prime.

Legendre's theorem is also a reinforcement of the conjecture. This theorem states that there always
exists a prime number between n? and (n + 1)? or, what is equivalent for the first congruence primality
theorem, that there always exists a number no < 2n+1 such that no is not congruent with (n+1) v pi
€ P(n + 1). Whenever then, based on the value of n, no is equal to 2n, (n + 1)? and 2n are incongruent
Vv pi € P(n + 1) and this implies, again by the primality theorem, that (n + 1) - 2n is equal to a prime
number. But (n + 1)? - 2n = n? +1 and therefore n? +1 will equal a prime number.

Here again, there is no mathematical consideration that beyond a certain (maximum) value of n there
are no more natural numbers such that (n + 1)? and 2n are incongruous and that therefore n? +1 turns
out to be a prime number.

Finally, with regard to Dirichlet's theorem, we observe that all terms n? +1 with n even:
5,17,37,65, 101, ......ccvvennee.

belong to the arithmetic sequence of the type 1 + 4m:

5,9,13, 17,21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, ....ceecvrnns

succession which, for Dirichlet, comprises infinite primes including all those of the type n? +1.
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Again, there is no mathematical consideration that beyond a certain (maximum) value of n among all
the successive infinite primes belonging to the series 1+4m there are not also some n? +1.

In short, all three of the above theorems support the existence of an infinite sequence of n? + 1 primes,
[n? +1(N)]: 5 (2) - 17 (4) - 37 (6) - 101 (10) - 197 (14) - 257 (16) - 401 (20) - 577 (24) - 677 (26) -

1297 (36) - 1601 (40) - 2917 (54) - 3137 (56) - 4357 (66) - 5477 (74) - 7057 (84) - 8101 (90) - 8837
(94) - 12101 (110) - 13457 (116) - 14401 (120) - 15377 (124) - 15877 (126) wcerrerrerrrrcne

even if they do not prove the conjecture fully.
2 The primality conditions of nz + 1

Let us consider any even positive integer n and see what condition must be satisfied for n?> +1 to be
a prime number.

By the primality theorem of compcongruence n? +1 is prime if:
(23)Vpi <n:n2f1(modp )i

or if, for each p [1]p = 1 and its complement equal to p-1, the result is:
24)Vpi sn:[n?],#pi-1

Starting then from condition (2.4) we find the conditions that n must satisfy in order for n? + 1 to be
prime.

Lemma 2.5 For each m, k ¢N with m = 1+2k the square of each number represented by one of the
rest classes modulo m corresponds to two rest classes modulo m.

Dim. From modular arithmetic we know that:
(2-6) [Xz]m = [+X]m * [+X]m or [Xz]m = [_X]m * [_X]m
where [+x] and [-x] represent two of the rest classes modulo m: [0], [1], [2], [3] -.......... [m-1]

Consequently, we can state that each class [x?],,, of rest modulo m corresponds to two classes, [+X]
e [—x]n, of rest modulus m, the second of which corresponds to the class [m — x],,.

So for example if we set x=5 and m=15, (2.6) becomes:
[25]15 = [5]1s * [O]us or [25]ss = [-5]15 * [-5]1s =[10]s
and thus to the rest class [25]15 , equal to [10]15, modulo 15 correspond the two rest classes modulo
15: [+5] and [-5]. It should be noted that the two classes are always one even and the other odd: if in

fact [+x],, ¢ pariallora [-x] = [-x+ m]  sara dispari e viceversa.

Definition 2.7 We denote by the name class-root(x) the two rest classes modulo m whose square is
equal to the rest class [x] modulo m.

Lemma 2.8 For each m, k ¢No with m = 3+4k there are no class-roots(m-1) modulo m.

As we know, all the odd natural numbers m can be of two types: 3+4k and 1+4k, with k belonging to
No .



Let us then assume by hypothesis that for m = 3+4k it is possible that two class-roots(m-1), [X]m and
[-X]m , of rest modulus m correspond to the rest class [m-1] modulo m. For this to be the case, the
equation must be solvable:

(29) [([i'x]m)z]m = [m - 1]m
i.e. for m=3+4k:
(210) [([i'x]m)z]m = [3 + 4k — 1]m = [2 + 4k]m

This equation is unsolvable in x since, if x is even, x? unlike 2+4k is a multiple of 4; then if x is odd,
the unsolvability is even more evident being x? odd and 2+4k even. The same non-solvability of (2.9)
can be proved for all numbers represented by the two classes.

Lemma 2.11 For every n, m, k ¢ N with m = 1+4Kk there always exist class-roots(m-1) modulo m.

Let us also assume here by hypothesis that for m = 1+4k it is possible that two class-roots(m-1), [X]
and [-x], of remainder modulus m correspond to the rest class [m-1] modulo m For this to be the case,
the equation must be solvable in k:

(2-12) [([ix]m)z]m = [m - 1]m
i.e. for m=1+4k:
(2.13) [([X])?1m = [1 + 4k — 1], = [4K]

equation that is always solvable in x for any value of m. In fact, surely at least one of the two classes
can be represented by an even number whose square is always a multiple of 4.

Primality Theorem of n? + 1 2.14 For every n, k ¢No and n even, n? + 1 is prime if Vp; € P(n) of
the type p; = 1+4Kk it follows that the rest class [n]pi modulo p; is different from the two class-
roots(p; — 1) modulus p;.

Dim. Prime numbers can also obviously be of two types: 3+4k and 1+4k, with k belonging to No .
Recalling the condition of primality (2.4) and according to Lemma 2.8 among the pi belonging to
[P(n) we must not consider those of type 3+4k since for them there is no class-root(p; — 1) modulo

pi.

In contrast, for primes of the type 1+4k (Lemma 2.11) there are always two class-roots(p; — 1)
modulo p; .

Given then any even positive integer n, n> +1 is prime if, see (2.4), V pi < n, with pi =1+4k: [nz]pl.;ﬁ
pi -1 with k> 0. But

(2.15) [n?]p,= [nJoi * [N]oi = [XTpi * [XDyi

with [x]pi rest class [n]pi modulo pi . If ¥ pi < n of type 1+4k the [x]pi Of (2.15) is different from the
class-roots(pi -1) modulo p; then n? + 1 is prime.

It can easily be verified that the above condition is satisfied by a long sequence of n and thus of the
firstn? + 1.

n2+1 (n): 5 (2) - 17 (4) - 37 (6) - 101 (10) ........ 21317 (146) - 22501 (150) - 24337 (156) - 25601
(160) .......... 2464901 (1570) - 2483777 (1576) - 2496401 (1580) ......... 29484901 (5430) - 29658917
(5446) - 29877157 (5466) ..............



Let us now demonstrate how this sequence is infinite.
3 Infinity theorem of n2 + 1 primes

Definition 3.1 Let us denote by P'(n) l'insieme dei primi appartenenti a P(n) of the type
p=1+4k.

Enunciation 3.2 Prime numbers of the type n? + 1, with n #N and even, are infinite and the relative
n are those for which the property that Vp; € P'(n) [n]pi is different from the two class-roots(p; —
1) modulo p;.

Dim. Alln satisfying the conditions of Theorem 2.13 are even positive integers whose remainder
classes [n]pi modulo p;, for each pi €P’(n), are different from the remainder classes(p; — 1) modulus
p; (e.g. if n=14 we have that P'(n) = {5, 13}; the two rest-root classes (5-1) modulo 5 are [2]s
and [3]s while the two rest-root classes (13-1) modulo 13 are [5]13 and [8]13 ; on the other
hand, the two rest-root classes 14 modulo 5 and modulo 13 are [4]s and [1]13, respectively, and
that is different from the respective rest-root classes above, and therefore 142 +1=197 is a
prime number).

That said, let us see how to calculate the number of n, such that n? +1 is prime, less than any even
positive integer No > 5.

Having then selected an No > 5 we denote by []( No ) the product of all primes belonging to P’( No
) and consider the number-class table (Appendix A) consisting for each natural number in the interval
[0, TT( No )] of the rest classes [n],i modulo pi for each pi belonging to P’'( No ).

We then delete from this table the rows that have rest classes n of prime modules p; belonging P’(
No ) equal to the two class-roots(pi - 1) modulo pi . The numbers in the number-classes table, whose
rows have been eliminated by the previous sieve, can then only be those which in their combination
of rest classes [n]pi modulo pi do not have, for each pi belonging to P'( No ), the respective two class-
roots (pi -1) modulo p; .

Then the even numbers M in the table that have not been deleted will, according to combinatorial
calculation, turn out to be:

(3.3) 2 * [Tperrcvoy (@ — 2)

Thus (3.3) gives us the quantity of numbers M of the table-interval [0, []( No )] whose combination
of rest classes [n]pi modulo p; does not include, for each p; belonging to P’( No ), the respective two
class-roots(pi -1) modulo pi . But in the interval [0, []( No )] there are certainly (Bertrand's postulate)
primes greater than No , and therefore not contained in the set IP’( No ), whose class-roots(pi -1)
modulo pi can be equal to the rest classes [n]pi for the same moduli pi . This eventuality precludes
extending the applicability of the primality theorem 2.13 also for the n included in the interval JNo ,
[1( No)]. Instead, we can state that all numbers Mno less than or equal to No (and thus belonging
to the interval [0, No ]) and for which the primality condition of Theorem 2.13 is satisfied are such
that Mno? + 1 is prime.

The existence of these numbers Mno is guaranteed by verifying their presence already for No = 6:
n=2 (n? +1=5), n=4 (n? +1=17) and n=6 (n? +1=37)...........

If we now consider a number N1 > No and such that [J( N1 ) > []( No ) we will certainly have that:

1 1
B4 s*llpervy(® —2) > S *Ilperivoy(P — 2)



i.e. the quantity of the M-numbers of the table-interval [0, [J( N1 )] is greater than that of the M-
numbers of the table-interval [0, []( No )]. This implies that the Mnz of the interval [0, N1 ] are also
greater than or equal to the Mno of the interval [0, No ]. Proceeding with successive increasing Ni the
number of Mni grows progressively and there can be no Nmax such that ¥n > N nmax? + 1 is not
prime.



APPENDIX A

NUMBERS-CLASSES TABLE: NUMBERS € [0, TT(NO)] - REMAINING CLASSES p € P'(NO)

[0. 65].

{5, 13} - [0, [T(no)]

14 - P'(no)

NO =

13

13

33
34
35
36
37
38
39
40

10
11
12

41

42

43

10
11
12

10
11
12
13
14
15
16
17
18
19
20
21

44
45

46

47

48

10
11
12

49

50
51

52

53
54
55
56
57

22
23
24
25

10
11
12

58
59
60
61

26
27
28
29
30
31

10
11
12

62

63

64
65

32
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